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CHAPTER 2
THE MICROSCOPIC PERSPECTIVE

Classical thermodynamics is self-contained and free-standing. It needs no
assumptions regarding the ultimate nature of matter for its development or its
application to practical problems. These are its cardinal virtues, and they
provide the basis for the certitude its statements are accorded in science and
engineering. However, the avoidance of theory which gives rise to this certitude
produces what might be considered a shortcoming — an inability to provide
insights into the ultimate nature of things. With thermodynamics we have
learned to successfully correlate the variables of a system. We may be able to
predict what will happen, but without theoretical insight we can not say how it
happened.

In order to provide this insight, particularly in regard to the ultimate basis
and interpretation of the laws and variables of classical thermodynamics,
statistical mechanics came into being. At its inception in the mid-nineteenth
century, statistical mechanics dealt with the application of statistical methods to
systems containing an enormous number of particles in continuous motion. The
motion and resulting collisions were assumed to conform to the laws of classical
mechanics.

This approach yielded useful results, but it was found that quantum
mechanics, developed in the early years of the twentieth century, was superior to
classical mechanics in dealing with the behavior of these extremely small
particles. While today the quantum mechanical view is universally accepted,
there are some systems that can be adequately described by classical mechanics.
These instances can be regarded as special limiting cases where the
more-general quantum mechanics reduces to classical mechanics.

Quantum statistical mechanics has been successfully applied to a wide
variety of systems, however, here we will be interested only in applications that
bear upon the thermodynamic variables: energy, entropy, and temperature.
Also, we will examine the simplest possible system — a monatomic ideal gas.
The approach is intended to be heuristic rather than rigorous and the results
will be gleaned for insight from the microscopic perspective.



2.1 FUNDAMENTAL CONCEPTS

Quantization of energy is the salient feature that distinguishes quantum
mechanics from classical mechanics. The energy levels permissible to any
molecule or atom are noncontinuous and are characterized by a set of discrete
gquantum numbers. These are the energy levels, or eigenvalues, for which it is
possible to obtain solutions of the Schrodinger equation. For a particle in a box
of dimensions L,, L, and L,, the permissible levels of translational energy are

given by
h2 2 n2 2
ez—En—g+—§+n—§% (2-1)
8mpLx Ly L:

where h is Planck's constant, m is the particle mass, and n,, n, and n, are the
gquantum numbers. These numbers are integers ranging from unity to extremely
large values. Because extremely large values of the n's are necessary in order to
yield the energy levels accessible to a single particle, the energy difference
between successive quantum states is extremely small. This means that an
extremely large number of translational quantum states is available to a particle
(atom or molecule). In addition, the particle’s quantum state is continually
changing as a result of collisions.

A system of thermodynamic interest will contain on the order of 10%
particles and, if frozen at a given instant, could be represented by a distribution
of the many particles among the even more abundant permissible quantum
states. Clearly, if thermodynamic properties are to be calculated, it will be
necessary to resort to statistical methods based on probabilities.

In assigning probabilities to quantum states, the following rules are
followed

1) quantum states of equal energy, €, have equal probabilities.

2) the statistical weight of a quantum state depends on its energy and

is proportional to exp (-e/KT).
These statements are the basic postulates of quantum statistical mechanics.’

' Actually, only statement 1 is a basic postulate. Statement 2 can be derived
from it if one assumes that the weight of a state depends only on its energy. See,
for example, K. Denbigh, Principles of Chemical Equilibrium, 3rd ed., Cambridge
University Press, Cambridge, 1971, Chap. 11.
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From these we determine the probability of finding a particle in its ith quantum
state as

_ exp(-a /KT)
' Texp(-g /kT)

(2-2)

The summation in the denominator is taken over all quantum states and is a
normalizing factor needed to make the sum of the probabilities over all states
equal to unity. This sum will be denoted by z and is called the particle partition
function.

z=3exp(-g/ KT) (2-3)

The assembly of particles may be described in a different manner using
the concept of assembly quantum states. At any instant, the distribution of the
N particles among their permissible quantum states can be considered to
constitute a single quantum state of the assembly. The assembly quantum state
is characterized by the total energy of the assembly. For an assembly of
non-interacting particles, such as an ideal gas, the total energy is merely the
sum of all the individual particle energies; for systems of interacting particles a
potential energy term must be included. Due to the large number of particles
and the large number of permissible particle quantum states, the number of
assembly quantum states can be expected to be enormous. Because each
collision changes the quantum states of two particles, the assembly quantum
state is forever changing in an apparently chaotic manner.

To calculate thermodynamic properties using the concept of assembly
gquantum states, probabilities are determined according to the following rules
which closely resemble those applied to a single particle

1) assembly quantum states of equal energy E have equal probabilities.

2) the statistical weight of an assembly quantum state depends on its

energy E and is proportional to exp (-E/ZKT).
Again, these statements are simply basic postulates that can not be proven but
are justified by the success of the relations deriving from them. The
overwhelming success of quantum statistical mechanics gives us no cause for
doubt. With these rules, we write for the probability of an assembly quantum
state

_ exp(-Ei /KT )
' Sexp(-E /kT)

(2-4)



As before, the denominator normalizes the probabilities and is the assembly
partition function denoted by Z

Z=2exp(-E / kT) (2-5)

The derivation of thermodynamic properties can be based on either the
particle or the assembly view; here we find it more convenient to use the latter.
The total energy of the assembly can be identified with the internal energy of
thermodynamics and written in terms of the probabilities and energies of the
assembly quantum states as

U=2PpE (2-6)

Alternatively, it can be expressed in terms of the partition function as’
In Z
U=kT? P n 2 (2-7)
O 0T [

Inspection of Egs. (2-6) and (2-7) suggests that it is possible through
gquantum statistical mechanics to determine absolute values of the internal
energy while classical thermodynamics is capable of dealing only with its
changes. This is not the case! Even though one consistently finds U instead of
AU in the literature of quantum statistical mechanics, it must be understood that
E; is the energy of an assembly quantum state relative to an unknown zero-level
value. If the E; in Egs. (2-4)— (2-6) were replaced with E/ - E,, where E/ is the
absolute value and E, the zero level value, it is easy to show’ that the left-hand
side of Eq. (2-6) becomes the internal energy change between the zero level and
the state under consideration.

Equation (2-7) shows that the partition function links the microscopic and
macroscopic realms and from this equation we can obtain other thermodynamic
properties using the thermodynamic network. For the entropy, we obtain’

S= g+ kInZ+ kT é"%% (2-8)

® For details see Appendix 2A.
° See Appendix 2B.

* For the derivation of Eq. (2-8) see Appendix 2C.
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The integration constant S, must now be determined. For all systems amenable
to treatment by quantum statistical mechanics, it has been found that a single
gquantum state exists at the lowest energy level(Z = 1) and thus S = S, at zero
absolute temperature. Although there is no general proof of this nondegeneracy,
Schrédinger has shown® that if the first n quantum states are of equal energy
(where n is a number comparable to Avogadro's number) the last two right-hand
terms of Eq. (2-8) are very close to zero. Setting S = S, seems reasonable and if
we invoke the third law of thermodynamics by setting S equal to zero at zero T, S,
becomes zero and Eqg. (2-8) simplifies to

@ In 2O

S=kInZ+ kT EGT% (2'9)

Equations relating other thermodynamic properties to the partition
function can be derived, however, here our interest is only in the energy and the
entropy. The more familiar expression

S=-kZpInp (2-10)

can be obtained by manipulating Eq. (2-9)".
For an isolated system, the energy remains constant and hence, according
to our first postulate, all quantum states are equally likely. If there is a total of Q
permissible assembly quantum states, the probability of any one of these states

will be 1/Q and Eq. (2-10) becomes
S=kinQ (2-11)

This is the equation upon which almost all attempts to obtain a physical picture
of entropy are based.

2.2 THE MICROSCOPIC VIEW

2.2.1 Energy. We define energy as a measure of the capacity of a system for
change. The system can be of any size ranging from the Universe down to a
single subatomic particle. We also know that energy exists in different forms
which are interconvertable although we are unable to explicate the mechanism
for its conversion. The reason for this lack of detailed understanding is that

5

E. Schrodinger, Statistical Thermodynamics, Cambridge University Press,
Cambridge, 1960, Chap. 3.

° See Appendix 2D for details of this transformation.
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energy is one of our fundamental physical concepts; we may explain phenomena
in terms of energy but can not explain energy. If we were able to explain it, our
explanation would have to be in terms of something more fundamental, but
there is nothing more fundamental. In spite of our inability to explain it, we
have a reasonably good sense of what it is and have learned to use it as a useful
concept in dealing with physical systems. The microscopic view has contributed
very little to our understanding of energy.

2.2.2 Temperature. In our development of quantum statistical mechanics, it was
simply stated that the weighing factor for different energy states contained the
absolute temperature. In a more rigorous development, this weighting factor can
be derived using only the postulate of equal probabilities for states of equal
energy. In this derivation, the absolute temperature is identified when the final
results are compared with various thermodynamic functions. Thus, there is no
special microscopic vantage point from which we can obtain a more enlightened
view of temperature.

2.2.3 Entropy. When written for a change of state within an isolated system,
Eq. (2-11) becomes

S,-5,= kin 2 (2-11a)

Q
and because we must have S, > S,, we conclude that Q, > Q,. Thus, an increase
in entropy is interpreted microscopically as an increase in Q, the total number of
permissible quantum states. The system moves in the direction of more
possibilities, or it can be said that there is a spreading of the system among
guantum states.

Entropy is often identified with disorder even though the terms order and
disorder are neither precise nor objective. From a microscopic viewpoint the
association of a positive entropy change with an increase in disorder seems quite
reasonable for a phase change or mixing process. For other processes, the
association is less obvious and for at least one process (the adiabatic
crystallization of a subcooled liquid) it fails completely.” Another complication
arises with the disorder interpretation of entropy when we recall that entropy is
defined only for an equilibrium state and therefore Q, and Q, refer to equilibrium
states. The accepted microscopic view of an equilibrium state entails complete

" See Ex. 4-1 of this textbook.
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randomness with regard to particle motion — chaos or maximum disorder. It
therefore seems inappropriate to regard Q, > Q, as representing an increase in
disorder when each state would represent maximum disorder. It is clear that the
entropy-as-disorder view is flawed and can lead to ambiguous or erroneous
interpretations.

There is another difficulty associated with using Q to obtain a physical
microscopic interpretation of entropy; it is not based on virtual observables such
as positions and velocities. The significance of Q is not found on a purely
physical level but rather in terms of something which can exist only in the mind
— the permissible number of quantum states. This concept comes into being
only when we move further into the mental realm and begin to translate the
physical into the mathematical description — Q is a parameter in our model of
the system. Rudolf Carnap’ seems to have had this in mind when he stated that
the statistical concept of entropy is a logical instead of a physical concept.

2.3 THE IDEAL MONATOMIC GAS
2.3.1 A Naive Approach. An ideal gas has no interaction energy and therefore

the energy of any assembly quantum state, E;, is simply the sum of the energies
of the particle quantum states at that instant

E= Z € (2-12)

where g, is the energy of the quantum state in which we find the j" particle and
the summation is taken over all particles. When Eq. (2-12) is substituted into
Eq. (2-5), the assembly partition function is

N
Z=3 exp%- > e KT % (2-13)
=1
which can be shown’ to be
7= (2-14)

* P.A. Schilpp, ed., The Philosophy of Rudolf Carnap, The Open Court Publishing
Co., La Salle, IL, 1963, p. 37.

° See Appendix 2E for details.
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Using Eq. (2-1) for the particle quantum numbers one obtains, after some
mathematical manipulation, the assembly partition function in terms of the
system variables™

(2-15)

2nkagN’2
h* O
and through the application of Eqgs. (2-7) and (2-9) one also obtains the internal
energy

= ZN:VNH
0

U= g NKT (2-16)
and entropy
S= Nk inV + S 1n ZKMTH, 30 (2-17)
0 2 0 h 020
From U and S we may determine the Helmholtz Free Energy.
A=U -TS= - NKT gInV + > 1In 52”"72”% (2-18)
0 2 0 h
and use the relation (gA/¢V), = -P to obtain the equation of state
OAD_ p- . NKT (2-19)

oV G \Y

The number of particles N can be expressed as the product of the number of
mols n and Avogadro's number N. Using the relation Nk = R, these results can
be restated

U= g nRT (2-16a)
S= nRInV+gnRInT+ S (2-17a)
PV=nRT (2-19a)

Equation (2-16) was derived on the basis that only translational energy need be
considered. While this is believed to be the only type of energy subject to change
in a physical process, the monatomic gas atoms may possess other types of
energy (e.g., energy associated with internal states of the atom) whose unknown

' See Appendix 2F for details.
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values do not allow us to assign an absolute value to the internal energy. As
previously shown, it is therefore more appropriate to write Eq. (2-16a) for a
change in state

3
Uz-U;= > NR(T,-T1) (2-16Db)

For a gram atom of gas (n = 1) we have

3
Uz~ U= E R(T2-T1) (2-16¢)

Because the constant volume heat capacity of a monatomic gas has been found
to be constant and equal to 3/2 R, perfect agreement exists here between
thermodynamic results and the results of quantum statistical mechanics as is
also the case for the equation of state.

If we use Eq. (2-17a) to represent the entropy change of a gram atom of
gas undergoing a change in volume and temperature, we obtain

S,-S=RIn Y2+ ¢, In 12 (2-17b)

1 T1

which is exactly the thermodynamic expression for an ideal gas with constant
heat capacity.

Thus, it would appear that what we have called the naive approach to the
application of quantum statistical mechanics to a monatomic ideal gas has been
outstandingly successful. Actually, this success is only partial because there are
two applications of Eq. (2-17) that do not fit the facts: absolute entropies are in
error and the equation yields a nonzero entropy change when two portions of the
same gas are mixed. The key to the difficulty lies in the second problem.

For the isothermal mixing of two quantities of the same gas, we write

Vi2=V1+V,
Ni2= N1+ N2
AS=S,-S,-S,
and use Eg. (2-17) for the entropies
AS=K[(Ny+ No)IN(Vi+V5) - NiInvs - No v,
If two 1/2-mol quantities are combined, we have

N
Ni= N2= E; Ni2=N



2-10

and can simplify the expression for AS to
AS=k[N]=RIn2

This is the entropy change on mixing as given by Eq. (14-22) of this textbook,
however, we do not expect an entropy change on mixing the same gas. This
problem is sometimes identified as the Gibb's paradox although it can be
considered a special case of the mixing paradox which will be dealt with in
chapter 7 of this essay.

2.3.2 A Forced Fit. The unfortunate result of a nonzero entropy change for
mixing the same gas can be remedied by writing the assembly partition function
as

N D E (2-20)
where it is seen that this is merely the previous (or naive) partition function, Eq.
(2-15), divided by N factorial. This adjustment can be justified by considering
the particles of the gas to be indistinguishable instead of distinguishable as we
tacitly assumed in evaluating the partition function as expressed by Eq. (2-15).
When we evaluated Eq. (2-13), we considered all possible assembly quantum
states defined by Eq. (2-12). Thus, if two particles switched quantum states, we
would have identified two different assembly quantum states. But if we could
not distinguish the particles, we wouldn't have noticed the switch and therefore
would have seen only a single quantum state. We have therefore used too many
assembly quantum states in evaluating the partition function. We have used
permutations to determine the number of assembly quantum states when we
should have used combinations and therefore we correct the situation by
dividing by N factorial.

Using Eq. (2-20) in Egs. (2-7) and (2-9) we obtain, as before, Eq. (2-16) for
the internal energy and Eg. (2-19) for the equation of state but for the entropy
obtain™

11

E. Schrédinger, Statistical Thermodynamics, Cambridge University Press,
Cambridge,
1960, Chap. 8.

¥ Use is made of Stirling's approximation In N! = NIn N - N
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0
S= NkDI Y3 Hznka >0 (2-21)
N 2 h 0 20

For changes involving constant N, this equation reduces to Eq. (2-17b); further,
it yields the correct absolute entropies and yields zero entropy change on mixing
the same gas.

The classical statistical mechanical treatment of the monatomic ideal gas
yielded an entropy expression equivalent to Eq. (2-17). Gibbs™ recognized the
need for the inclusion of N! into the assembly partition function and justified it
on the basis that the interchange of like particles should be of no statistical
consequence. Yet, Gibbs still held the classical notion that the particles were
distinguishable. He believed that the particles obeyed the laws of classical
mechanics and, despite the impossible computational difficulties, were in
principle traceable and hence identifiable. Today, in the age of quantum
physics, it is essential to specify whether or not the constituent particles of a
system are distinguishable. For a single-component system, only those particles
which can be tied to a spatial location, such as a crystal lattice, can be
considered distinguishable.

We have noted that the naive approach gives the correct results for
internal energy and the equation of state as well as entropy changes in a system
of constant N. However, in order to bring the statistical entropy into complete
agreement with known thermodynamic results, it was necessary to introduce the
concept of particle indistinguishability. Again, it appears that in order to deal
successfully with entropy it is necessary to go a step beyond a description of the
system in terms of virtual observables. Instead of a model involving only
physical quantities, we have considered factors such as distinguishability which
arise from our mathematical treatment and exist only in the mind of the model
maker. The focus has been shifted from the system to our representation of the
system' — again a move from the physical to the logical realm.

“J.W. Gibbs, Elementary Principles of Statistical Mechanics, Yale University
Press, Dover ed., 1960, p. 187.

" This has been the direction taken by modern physics. Heisenberg has stated
that quantum mechanics does not deal with systems but with our description of
systems.
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2.4 A CAVEAT

In this chapter, our interest has been directed toward applications of
guantum statistical mechanics that would provide us with a microscopic
interpretation of entropy and we have seen that the results leave something to be
desired. Thus, it is quite possible that the reader will obtain a negative
impression and form the opinion that quantum statistical mechanics is of little
value. This is most definitely not the case! The onus for this incongruity should
not be placed on quantum statistical mechanics but rather on the manner in
which entropy is defined (more about this later). Moreover, quantum statistical
mechanics has yielded many fruitful results covering a wide variety of systems
and often its results and calculation methods are preferred to those of classical
thermodynamics.”

' An example is the calculation of absolute entropies and other thermodynamic
properties of ideal gases.
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APPENDIX 2A
The relationship between U and Z

Combining Egs. (2-4) and (2-6) yields
_ 2 E exp(-E; /KT)

(2-22)
2exp(-E; /KT)
Recognizing that
kTZ:—Texp(- Ei /KT)= Ei exp(- E; /KT)
we can write Eq. (2-22) as
, d
KT*——Zexp(-E /KT )
U= dT
> exp(-E; /KT)
or
kT dz dlnz
2-23
Z dT T oT M ( )

The condition of constant volume has been specified for the derivative in Eq.
(2-23) because, in general, E may depend upon the volume® and the
differentiation step leading to Eq. (2-23) is valid only for constant E, hence
constant V.

* For example, Eq. (2-1) shows the particle quantum states to depend on the
volume L L L,.
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APPENDIX 2B
No absolute value for internal energy

The E; previously used is actually E’ - E,, where E; is the absolute, but
unknown, value and E,, is what was taken as the zero-level value. The energy of
a quantum state is actually E;/ = E; + E, and the partition function is

7' = ze-( Ei+ Eo)/KT
or
7'= e—EU/sze—E,/kT
which can be written as
Z'=(e®"")z

or as
InZ'= '—E"+ InZ
kT

where Z and Z' are based on E, and E; respectively. If we now differentiate with
respect to T and multiply the result by kT, we obtain

InZ' In Z
kTZEkan—H = Eot kTZEPLH
0O oT [ 0adT [
Identifying the left-hand term with U’, the absolute value of U, we obtain

U=U"-u,= kTP 2]
00T [

and see that U is relative and not absolute.
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Derivation of Eq. (2-8) from Eq. (2-7)
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The heat capacity C, can be obtained from the internal energy U as

expressed by Eq. (2-7)

ou 0 U InZO 4
= =k — 2
Cv DOT% oTH got %H

which yields

2
CV=2kTEEInZH+kT2 F InZZ
00T [ oT

For a constant-volume process, we may write

2
ds:CV—dezkHaﬂHdnkTE“ﬂ dT
T 00T [ oT?

and integrate to obtain

S=g,+ 2k[

or

S= s+ 2kfdInz+kfTd N2 F
0dT

Integrating the second integral by parts gives

dinZ

S=g,+2kIn Z+ kT -kinz
dT

which reduces to the final result

S=g,+kIlnZ+ kTBmLZH
00T [

dclandT+ijiEganEdT

T dT 0 dT O
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APPENDIX 2D
Derivation of Eq. (2-10) from Eq. (2-9)

In establishing the equivalence of Egs. (2-9) and (2-10), it is convenient to
begin with Eq. (2-10) and use Egs. (2-4) and (2-5) for P, and Z respectively.

exd-E; /kT) O E O
spinp=s=—E2 =225 pz
Piin P z Hkr H
Eiexp-E; /kT) InZ
Z ||n i:'z = ZeX = |/kT
P Inp e 5 P(-E )

From Eq. (2-22) the first right-hand summation is seen to be U/KT. The second
summation is Z, therefore

Substituting for U as given by Eq. (2-7) yields

10 InZ 0
spinp=-2kt PN 2H s kinz
PP kg 0oT & .

From Eq. (2-8) the bracketed term is seen to be S and we write

S=-kZP||n Pi
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APPENDIX 2E
Relating the assembly and particle partition functions

Consider the simplest case of only two particles identified with subscripts i
and j. The assembly partition function can be written

z= Zexpﬁ-—(a:Tej) .

For simplicity let

e _ € _
—=x56 and —=vy. 57
kT~ kT
and note that

= Ze’x"yj = Ze'xi e'yJ
We will write out a few terms in the summation which is taken over all possible
combinations of i and j

=g g+t glg’.. teleit...
e+t gegr. . +gglit ...
LtHetelit gt elelit .

The summation can be rearranged to

Z=g*(g"+tg”..+gVi+..)+
e'XZ(e'y1+ e'Yz___+ e'yj + +

gf(ei+ ¥ teVit. )t ...
which becomes

Z=(grt+eg@.+eX+.)(e"teg"2..tgVit..)

Z= Ze‘xi EJZe'y" %

Because the two particles are identical, we can write

or

_0 _ e -2
Z= HZexpg T Z
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which on generalizing becomes
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APPENDIX 2F

In evaluating the particle partition function z, we note that a monatomic gas can
possess only translational energy and observe from Eqg. (2-1) that the
components of translational energy are independent (i.e., the quantum numbers
n,, n, and n, are independent). This allows us to write

O (ecteyte)d

z=2exp T

and by analogy with the mathematics that led from Eqg. (2-13) to Eq. (2-14) we
may write
2= 7242y Z;

Using Eq. (2-1) the particle partition function for x-translational energy is

_ h’n;
“Texpt g

The summation is taken over all values of n, and, as we have previously noted,
quite large values of n, are involved with extremely small spacing between energy
levels. Thus, the summation may be closely approximated by the integral

© 2h2
Ny
2 [P Gt 18
_ Hd2mmkTLE B
Zx_ h2

The particle partition function now becomes

which has the value'’

2rmkT
z= zxzyzz=VH 5

where the product L,L L, has been replaced with V, the volume of the box.
The assembly partition function is now

" Details of this integration are provided by G.S. Rushbrooke, Introduction to
Statistical Mechanics, Oxford University Press, London, 1949, Chap. 3.
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2T
[
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O h



