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CHAPTER 2

THE MICROSCOPIC PERSPECTIVE

Classical thermodynamics is self-contained and free-standing.  It needs no

assumptions regarding the ultimate nature of matter for its development or its

application to practical problems.  These are its cardinal virtues, and they

provide the basis for the certitude its statements are accorded in science and

engineering.  However, the avoidance of theory which gives rise to this certitude

produces what might be considered a shortcoming —  an inability to provide

insights into the ultimate nature of things.  With thermodynamics we have

learned to successfully correlate the variables of a system.  We may be able to

predict what will happen, but without theoretical insight we can not say how it

happened.

In order to provide this insight, particularly in regard to the ultimate basis

and interpretation of the laws and variables of classical thermodynamics,

statistical mechanics came into being.  At its inception in the mid-nineteenth

century, statistical mechanics dealt with the application of statistical methods to

systems containing an enormous number of particles in continuous motion.  The

motion and resulting collisions were assumed to conform to the laws of classical

mechanics.

This approach yielded useful results, but it was found that quantum

mechanics, developed in the early years of the twentieth century, was superior to

classical mechanics in dealing with the behavior of these extremely small

particles.  While today the quantum mechanical view is universally accepted,

there are some systems that can be adequately described by classical mechanics.

 These instances can be regarded as special limiting cases where the

more-general quantum mechanics reduces to classical mechanics.

Quantum statistical mechanics has been successfully applied to a wide

variety of systems, however, here we will be interested only in applications that

bear upon the thermodynamic variables: energy, entropy, and temperature. 

Also, we will examine the simplest possible system —  a monatomic ideal gas. 

The approach is intended to be heuristic rather than rigorous and  the results

will be gleaned for insight from the microscopic perspective.



2-2

2.1  FUNDAMENTAL CONCEPTS

Quantization of energy is the salient feature that distinguishes quantum

mechanics from classical mechanics.  The energy levels permissible to any

molecule or atom are noncontinuous and are characterized by a set of discrete

quantum numbers.  These are the energy levels, or eigenvalues, for which it is

possible to obtain solutions of the Schrödinger equation.  For a particle in a box

of dimensions Lx, Ly, and Lz, the permissible levels of translational energy are

given by
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where h is Planck's constant, m is the particle mass, and nx, ny, and nz are the

quantum numbers.  These numbers are integers ranging from unity to extremely

large values.  Because extremely large values of the n's are necessary in order to

yield the energy levels accessible to a single particle, the energy difference

between successive quantum states is extremely small.  This means that an

extremely large number of translational quantum states is available to a particle

(atom or molecule).  In addition, the particle's quantum state is continually

changing as a result of collisions.

A system of thermodynamic interest will contain on the order of 1023

particles and, if frozen at a given instant, could be represented by a distribution

of the many particles among the even more abundant permissible quantum

states.  Clearly, if thermodynamic properties are to be calculated, it will be

necessary to resort to statistical methods based on probabilities.

In assigning probabilities to quantum states, the following rules are

followed

1) quantum states of equal energy, e, have equal probabilities.

2) the statistical weight of a quantum state depends on its energy and

is proportional to exp (-e/kT).

These statements are the basic postulates of quantum statistical mechanics.1 

                                      
1 Actually, only statement 1 is a basic postulate.  Statement 2 can be derived
from it if one assumes that the weight of a state depends only on its energy.  See,
for example, K. Denbigh, Principles of Chemical Equilibrium, 3rd ed., Cambridge
University Press, Cambridge, 1971, Chap. 11.
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From these we determine the probability of finding a particle in its ith quantum

state as
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(2-2)

The summation in the denominator is taken over all quantum states and is a

normalizing factor needed to make the sum of the probabilities over all states

equal to unity.  This sum will be denoted by z and is called the particle partition

function.

) kT / e(-   =z iexpΣ (2-3)

The assembly of particles may be described in a different manner using

the concept of assembly quantum states.  At any instant, the distribution of the
N particles among their permissible quantum states can be considered to

constitute a single quantum state of the assembly.  The assembly quantum state

is characterized by the total energy of the assembly.  For an assembly of

non-interacting particles, such as an ideal gas, the total energy is merely the

sum of all the individual particle energies; for systems of interacting particles a

potential energy term must be included.  Due to the large number of particles

and the large number of permissible particle quantum states, the number of

assembly quantum states can be expected to be enormous.  Because each

collision changes the quantum states of two particles, the assembly quantum

state is forever changing in an apparently chaotic manner.

To calculate thermodynamic properties using the concept of assembly

quantum states, probabilities are determined according to the following rules

which closely resemble those applied to a single particle

1) assembly quantum states of equal energy E have equal probabilities.

2) the statistical weight of an assembly quantum state depends on its

energy E and is proportional to exp (-E/kT).

Again, these statements are simply basic postulates that can not be proven but

are justified by the success of the relations deriving from them.  The

overwhelming success of quantum statistical mechanics gives us no cause for

doubt.  With these rules, we write for the probability of an assembly quantum

state
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As before, the denominator normalizes the probabilities and is the assembly

partition function denoted by Z

) kT / E(-   = Z iexpΣ (2-5)

The derivation of thermodynamic properties can be based on either the

particle or the assembly view; here we find it more convenient to use the latter. 

The total energy of the assembly can be identified with the internal energy of

thermodynamics and written in terms of the probabilities and energies of the

assembly quantum states as

E P  = U iiΣ (2-6)

Alternatively, it can be expressed in terms of the partition function as2
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Inspection of Eqs. (2-6) and (2-7) suggests that it is possible through

quantum statistical mechanics to determine absolute values of the internal

energy while classical thermodynamics is capable of dealing only with its

changes.  This is not the case!  Even though one consistently finds U instead of

∆U in the literature of quantum statistical mechanics, it must be understood that
Ei is the energy of an assembly quantum state relative to an unknown zero-level

value.  If the Ei in Eqs. (2-4)— (2-6) were replaced with Ei′ - Eo, where Ei′ is the

absolute value and Eo the zero level value, it is easy to show3 that the left-hand

side of Eq. (2-6) becomes the internal energy change between the zero level and

the state under consideration.

Equation (2-7) shows that the partition function links the microscopic and

macroscopic realms and from this equation we can obtain other thermodynamic

properties using the thermodynamic network.  For the entropy, we obtain4
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2 For details see Appendix 2A.

3 See Appendix 2B.

4 For the derivation of Eq. (2-8) see Appendix 2C.
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The integration constant So must now be determined.  For all systems amenable

to  treatment by quantum statistical mechanics, it has been found that a single

quantum state exists at the lowest energy level(Z = 1) and thus S = So at zero

absolute temperature.  Although there is no general proof of this nondegeneracy,

Schrödinger has shown5 that if the first n quantum states are of equal energy

(where n is a number comparable to Avogadro's number) the last two right-hand

terms of Eq. (2-8) are very close to zero.  Setting S = So seems reasonable and if

we invoke the third law of thermodynamics by setting S equal to zero at zero T, So

becomes zero and Eq. (2-8) simplifies to
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Equations relating other thermodynamic properties to the partition

function can be derived, however, here our interest is only in the energy and the

entropy.  The more familiar expression

P  P  k- = S ii lnΣ (2-10)

can be obtained by manipulating Eq. (2-9)6.

For an isolated system, the energy remains constant and hence, according

to our first postulate, all quantum states are equally likely.  If there is a total of Ω
permissible assembly quantum states, the probability of any one of these states

will be 1/Ω and Eq. (2-10) becomes

Ω  k = S ln (2-11)

This is the equation upon which almost all attempts to obtain a physical picture

of entropy are based.

2.2  THE MICROSCOPIC VIEW

2.2.1 Energy.  We define energy as a measure of the capacity of a system for

change.  The system can be of any size ranging from the Universe down to a

single subatomic particle.  We also know that energy exists in different forms

which are interconvertable although we are unable to explicate the mechanism

for its conversion.  The reason for this lack of detailed understanding is that

                                      
5 E. Schrödinger, Statistical Thermodynamics, Cambridge University Press,
Cambridge, 1960, Chap. 3.

6 See Appendix 2D for details of this transformation.
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energy is one of our fundamental physical concepts; we may explain phenomena

in terms of energy but can not explain energy.  If we were able to explain it, our

explanation would have to be in terms of something more fundamental, but

there is nothing more fundamental.  In spite of our inability to explain it, we

have a reasonably good sense of what it is and have learned to use it as a useful

concept in dealing with physical systems.  The microscopic view has contributed

very little to our understanding of energy.

2.2.2 Temperature.  In our development of quantum statistical mechanics, it was

simply stated that the weighing factor for different energy states contained the

absolute temperature.  In a more rigorous development, this weighting factor can

be derived using only the postulate of equal probabilities for states of equal

energy.  In this derivation, the absolute temperature is identified when the final

results are compared with various thermodynamic functions.  Thus, there is no

special microscopic vantage point from which we can obtain a more enlightened

view of temperature.

2.2.3 Entropy.   When written for a change of state within an isolated system,

Eq. (2-11) becomes

Ω
Ω

1

2
12   k = S - S ln (2-11a)

and because we must have S2 > S1, we conclude that Ω2 > Ω1.  Thus, an increase

in entropy is interpreted microscopically as an increase in Ω, the total number of

permissible quantum states. The system moves in the direction of more

possibilities, or it can be said that there is a spreading of the system among

quantum states.

Entropy is often identified with disorder even though the terms order and

disorder are neither precise nor objective.  From a microscopic viewpoint the

association of a positive entropy change with an increase in disorder seems quite

reasonable for a phase change or mixing process.  For other processes, the

association is less obvious and for at least one process (the adiabatic

crystallization of a subcooled liquid) it fails completely.7 Another complication

arises with the disorder interpretation of entropy when we recall that entropy is

defined only for an equilibrium state and therefore Ω1 and Ω2 refer to equilibrium

states.  The accepted microscopic view of an equilibrium state entails complete

                                                                                                                          

7 See Ex. 4-1 of this textbook.
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randomness with regard to particle motion —  chaos or maximum disorder.  It

therefore seems inappropriate to regard Ω2 > Ω1 as representing an increase in

disorder when each state would represent maximum disorder.  It is clear that the

entropy-as-disorder view is flawed and can lead to ambiguous or erroneous

interpretations.

There is another difficulty associated with using Ω to obtain a physical

microscopic interpretation of entropy; it is not based on virtual observables such

as positions and velocities.  The significance of Ω is not found on a purely

physical level but rather in terms of something which can exist only in the mind

—  the permissible number of quantum states.  This concept comes into being

only when we move further into the mental realm and begin to translate the

physical into the mathematical description —  Ω is a parameter in our model of

the system.  Rudolf Carnap8 seems to have had this in mind when he stated that

the statistical concept of entropy is a logical instead of a physical concept.

2.3  THE IDEAL MONATOMIC GAS

2.3.1 A Naive Approach.  An ideal gas has no interaction energy and therefore

the energy of any assembly quantum state, Ei, is simply the sum of the energies

of the particle quantum states at that instant

e  = E j

N

j=1
i Σ (2-12)

where ej is the energy of the quantum state in which we find the jth particle and

the summation is taken over all particles.  When Eq. (2-12) is substituted into

Eq. (2-5), the assembly partition function is







Σ Σ  /kT e  -    = Z j

N

j=1

exp (2-13)

which can be shown9 to be

z = Z N (2-14)

                                      
8 P.A. Schilpp, ed., The Philosophy of Rudolf Carnap, The Open Court Publishing
Co., La Salle, IL, 1963, p. 37.

9 See Appendix 2E for details.
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Using Eq. (2-1) for the particle quantum numbers one obtains, after some

mathematical manipulation, the assembly partition function in terms of the

system variables10


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
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2
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NN π
(2-15)

and through the application of Eqs. (2-7) and (2-9) one also obtains the internal

energy

NkT 
2

3
 = U (2-16)

and entropy
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From U and S we may determine the Helmholtz Free Energy.
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and use the relation (∂A/∂V)T = -P to obtain the equation of state

V

NkT
 - = P- = 

V

A

T


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


∂
∂

(2-19)

The number of particles N can be expressed as the product of the number of

mols n and Avogadro's number N.  Using the relation Nk = R, these results can

be restated

nRT 
2

3
 = U (2-16a)

S + T  nR 
2

3
 + V  nR = S 0lnln (2-17a)

nRT = PV (2-19a)

Equation (2-16) was derived on the basis that only translational energy need be

considered.  While this is believed to be the only type of energy subject to change

in a physical process, the monatomic gas atoms may possess other types of

energy (e.g., energy associated with internal states of the atom) whose unknown

                                      
10 See Appendix 2F for details.
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values do not allow us to assign an absolute value to the internal energy.  As

previously shown, it is therefore more appropriate to write Eq. (2-16a) for a

change in state

)T- T( nR 
2

3
 = U - U 1212 (2-16b)

For a gram atom of gas (n = 1) we have

)T- T( R 
2

3
 = u - u 1212 (2-16c)

Because the constant volume heat capacity of a monatomic gas has been found

to be constant and equal to 3/2 R, perfect agreement exists here between

thermodynamic results and the results of quantum statistical mechanics as is

also the case for the equation of state.

If we use Eq. (2-17a) to represent the entropy change of a gram atom of

gas undergoing a change in volume and temperature, we obtain

T

T  C + 
V

V  R = S - S
1

2
V

1

2
12 lnln (2-17b)

which is exactly the thermodynamic expression for an ideal gas with constant

heat capacity.

Thus, it would appear that what we have called the naive approach to the

application of quantum statistical mechanics to a monatomic ideal gas has been

outstandingly successful.  Actually, this success is only partial because there are

two applications of Eq. (2-17) that do not fit the facts:  absolute entropies are in

error and the equation yields a nonzero entropy change when two portions of the

same gas are mixed.  The key to the difficulty lies in the second problem.

For the isothermal mixing of two quantities of the same gas, we write

S - S - S = S
N + N = N

V + V = V

2112

2112

2112

∆

and use Eq. (2-17) for the entropies

[ ]V  N - V  N - )V + V(  )N + N( k = S 22112121 lnlnln∆

If two 1/2-mol quantities are combined, we have

N = N    ; 
2

N
12 = N = N 21
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and can simplify the expression for ∆S to

[ ] 2 ln R = N k = S∆

This is the entropy change on mixing as given by Eq. (14-22) of this textbook,

however, we do not expect an entropy change on mixing the same gas.  This

problem is sometimes identified as the Gibb's paradox11 although it can be

considered a special case of the mixing paradox which will be dealt with in

chapter 7 of this essay.

2.3.2 A Forced Fit.   The unfortunate result of a nonzero entropy change for

mixing the same gas can be remedied by writing the assembly partition function

as








h

mkT2
  

N!
V = Z

2

3N/2N π
(2-20)

where it is seen that this is merely the previous (or naive) partition function, Eq.

(2-15), divided by N factorial.  This adjustment can be justified by considering

the particles of the gas to be indistinguishable instead of distinguishable as we

tacitly assumed in evaluating the partition function as expressed by Eq. (2-15). 

When we evaluated Eq. (2-13), we considered all possible assembly quantum

states defined by Eq. (2-12).  Thus, if two particles switched quantum states, we

would have identified two different assembly quantum states.  But if we could

not distinguish the particles, we wouldn't have noticed the switch and therefore

would have seen only a single quantum state.  We have therefore used too many

assembly quantum states in evaluating the partition function.  We have used

permutations to determine the number of assembly quantum states when we

should have used combinations and therefore we correct the situation by

dividing by N factorial.

Using Eq. (2-20) in Eqs. (2-7) and (2-9) we obtain, as before, Eq. (2-16) for

the internal energy and Eq. (2-19) for the equation of state but for the entropy

obtain12

                                      
11 E. Schrödinger, Statistical Thermodynamics, Cambridge University Press,
Cambridge,
1960, Chap. 8.

12 Use is made of Stirling's approximation  ln N! = Nln N - N
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For changes involving constant N, this equation reduces to Eq. (2-17b); further,

it yields the correct absolute entropies and yields zero entropy change on mixing

the same gas.

The classical statistical mechanical treatment of the monatomic ideal gas

yielded an entropy expression equivalent to Eq. (2-17).  Gibbs13 recognized the

need for the inclusion of N! into the assembly partition function and justified it

on the basis that the interchange of like particles should be of no statistical

consequence.  Yet, Gibbs still held the classical notion that the particles were

distinguishable.  He believed that the particles obeyed the laws of classical

mechanics and, despite the impossible computational difficulties, were in

principle traceable and hence identifiable.  Today, in the age of quantum

physics, it is essential to specify whether or not the constituent particles of a

system are distinguishable.  For a single-component system, only those particles

which can be tied to a spatial location, such as a crystal lattice, can be

considered distinguishable.

We have noted that the naive approach gives the correct results for

internal energy and the equation of state as well as entropy changes in a system

of constant N.  However, in order to bring the statistical entropy into complete

agreement with known thermodynamic results, it was necessary to introduce the

concept of particle indistinguishability.  Again, it appears that in order to deal

successfully with entropy it is necessary to go a step beyond a description of the

system in terms of virtual observables.  Instead of a model involving only

physical quantities, we have considered factors such as distinguishability which

arise from our mathematical treatment and exist only in the mind of the model

maker.  The focus has been shifted from the system to our representation of the

system14 —  again a move from the physical to the logical realm.

                                      
13J.W. Gibbs, Elementary Principles of Statistical Mechanics, Yale University
Press, Dover ed., 1960, p. 187.

14 This has been the direction taken by modern physics.  Heisenberg has stated
that quantum mechanics does not deal with systems but with our description of
systems.
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2.4  A CAVEAT

In this chapter, our interest has been directed toward applications of

quantum statistical mechanics that would provide us with a microscopic

interpretation of entropy and we have seen that the results leave something to be

desired.  Thus, it is quite possible that the reader will obtain a negative

impression and form the opinion that quantum statistical mechanics is of little

value.  This is most definitely not the case!  The onus for this incongruity should

not be placed on quantum statistical mechanics but rather on the manner in

which entropy is defined (more about this later).  Moreover, quantum statistical

mechanics has yielded many fruitful results covering a wide variety of systems

and often its results and calculation methods are preferred to those of classical

thermodynamics.15

                                      
15 An example is the calculation of absolute entropies and other thermodynamic
properties of ideal gases.
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APPENDIX 2A

The relationship between U and Z

Combining Eqs. (2-4) and (2-6) yields

) /kT E(-  

) /kT E(-  E  = U
i

ii

exp

exp

Σ
Σ

(2-22)

Recognizing that

/kT) E(-   E = /kT) E(-  
dT

d
 kT iii

2 expexp

we can write Eq. (2-22) as

) /kT E(-  

) /kT E(-   
dT

d
 kT

 = U
i

i
2

exp

exp

Σ

Σ

or

)
T 

 Z 
(T k = )

T d

 Zd
( 

Z
T k

 = U V
2

2

∂
∂ ln

(2-23)

The condition of constant volume has been specified for the derivative in Eq.

(2-23) because, in general, E may depend upon the volume16 and the

differentiation step leading to Eq. (2-23) is valid only for constant E, hence

constant V.

                                      
16 For example, Eq. (2-1) shows the particle quantum states to depend on the
volume LxLyLz.
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APPENDIX 2B

No absolute value for internal energy

The Ei previously used is actually Ei′ - Eo, where Ei′ is the absolute, but

unknown, value and Eo, is what was taken as the zero-level value.  The energy of

a quantum state is actually Ei′ = Ei + Eo and the partition function is

e =Z )/kTE+E-( oiΣ′

 or

e e = Z /kTE-kT / E- io Σ′

which can be written as

 Z)e( = Z /kTE- o′

or as

 Z + 
kT
E-

 = Z o lnln ′

where Z and Z′ are based on Ei and Ei′ respectively.  If we now differentiate with

respect to T and multiply the result by kT2, we obtain








∂
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

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


∂
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 Z 
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T

Z  
 kT

V

2
o

V

2 lnln

Identifying the left-hand term with U′, the absolute value of U, we obtain






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∂
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 Z 
 kT = U - U = U

V

2
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ln

and see that U is relative and not absolute.
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APPENDIX 2C

Derivation of Eq. (2-8) from Eq. (2-7)

The heat capacity Cv can be obtained from the internal energy U as

expressed by Eq. (2-7)
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For a constant-volume process, we may write
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and integrate to obtain
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Integrating the second integral by parts gives

 Z k - 
dT

 Z d
kT +  Z 2k + S = S o ln

ln
ln

which reduces to the final result
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APPENDIX 2D

Derivation of Eq. (2-10) from Eq. (2-9)

In establishing the equivalence of Eqs. (2-9) and (2-10), it is convenient to

begin with Eq. (2-10) and use Eqs. (2-4) and (2-5) for Pi and Z respectively.





ΣΣ  Z - 

kT
E - 

Z

/kT) E(-
 = P  P

ii
ii ln

exp
ln

) kT / E(-  
Z

 Z
 - 

kTZ

/kT) E(- E - = P  P i
ii

ii exp
lnexp

ln ΣΣΣ

From Eq. (2-22) the first right-hand summation is seen to be U/kT.  The second

summation is Z, therefore





Σ  Z k + 
T

U
 

k

1
 - =  Z - 

kT

U
 - = P  P ii lnlnln

Substituting for U as given by Eq. (2-7) yields
















∂
∂Σ  ln Zk  + 

ln
ln

VT

 Z 
 kT  

k

1
 - = P  P ii

From Eq. (2-8) the bracketed term is seen to be S and we write

P  P k - = S ii lnΣ
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APPENDIX 2E

Relating the assembly and particle partition functions

Consider the simplest case of only two particles identified with subscripts i

and j.  The assembly partition function can be written





Σ  

kT

)e + e(
 -   = Z jiexp

For simplicity let

x = 
kT
e

i
i 56 and y = 

kT
e

j
j 57

and note that

ee = e = Z y-x-y-x- jiji ΣΣ

We will write out a few terms in the summation which is taken over all possible

combinations of i and j

... + ee + ...ee + ee = Z y-x-y-x-y-x- j12111

... + ee + ...ee + ee y-x-y-x-y-x- j22212

... + ee + ...ee + ee + ... y-x-y-x-y-x- ji2i1i

The summation can be rearranged to

+ ...) + e + ...e + e(e = Z y-y-y-x- j211

+ ... ...) + e + ...e + e(e y-y-y-x- j212

... + ...) + e + ...e + e(e y-y-y-x- j21i

which becomes

...) + e + ...e + e...)( + e + ...e + e( = Z y-y-y-x-x-x- j21i21

or







= ∑∑ −−

j

y

i

x ji eeZ

Because the two particles are identical, we can write

z =  
kT
e -    = Z 2i

2














Σ exp
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which on generalizing becomes

z = Z N
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APPENDIX 2F

In evaluating the particle partition function z, we note that a monatomic gas can

possess only translational energy and observe from Eq. (2-1) that the

components of translational energy are independent (i.e., the quantum numbers
nx, ny, and nz are independent).  This allows us to write





Σ

kT

)e + e +e(
 -    =z zyxexp

and by analogy with the mathematics that led from Eq. (2-13) to Eq. (2-14) we

may write

zzz =z zyx

Using Eq. (2-1) the particle partition function for x-translational energy is





Σ

kTmL8
nh -    = z 2
x

2
x

2

x exp

The summation is taken over all values of nx and, as we have previously noted,

quite large values of nx are involved with extremely small spacing between energy

levels.  Thus, the summation may be closely approximated by the integral

dn  
kTmL8

hn -    = z x2
x

22
x

0

x 





∫
∞

exp

which has the value17        







h

mkTL2 
 = z 2

2
x

1/2

x

π

The particle partition function now becomes








 
h

mkT2
  V = zzz =z 

2

3/2

zyx

π

where the product LxLyLz has been replaced with V, the volume of the box.

The assembly partition function is now

                                      
17 Details of this integration are provided by G.S. Rushbrooke, Introduction to
Statistical Mechanics, Oxford University Press, London, 1949, Chap. 3.
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






h

mkT2
  V = z = Z

2

3N/2

NN π


