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Introduction 
             
Consider the simple apparatus depicted in the 
figure to the right; a cylindrical tank filled with 
water is to be drained through a brass tube.  The 
cylindrical tank has a diameter of about 15.5 cm 
and it is equipped with a set of discharge tubes 
and an orifice.  We want to observe the change 
in depth of water with time by measuring h(t).  
Let’s formulate a mass balance for this process: 
  

-[rate out] = [accumulation], or 
  

dt
dhRVR T ρπρπ 22 =− ,            (1)   

  
 
where R and V are the radius of the discharge 
tube and the average velocity in the tube, 
respectively.  We can rewrite the equation in a 
more convenient form: 
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Therefore, if we can relate V to h we should, in principle, be able to predict h(t) for any 
drain tube.  Now examine the macroscopic mechanical energy balance on page 207 of 
Transport Phenomena.  If we neglect the change in kinetic energy and omit the loss 
factor for the contraction, we are left with: 
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where L is the length of the drain tube attached to the bottom of the tank.  Clearly, we can 
rewrite (3) to yield: 
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Next, consider the Moody chart on page 182 of your text.  If the Reynolds number of the 
discharge flow falls between about 3000 and 105, and if the brass tube is hydraulically 
smooth, then 
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We introduce this approximation into (4) and isolate V.  You should verify that: 
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Now our model is ready: 
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We could solve this elementary differential equation analytically, but that would be a 
mistake for reasons that will soon be apparent.  Suppose we discretize the equation by 
writing: 
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If we multiply by Δt, and add ht to both sides, we have the Euler method (for numerical 
solution of the differential equation).  Remember that the Euler method is a straight-line 
piecewise approximation, so if the solution exhibits a lot of curvature we’ll need a very 
small Δt!  We’ll come back to our discussion of a solution procedure later.  There are two 
other phenomena requiring our attention; we need to assess whether or not they will 
adversely affect accord between the experimental data and our model. 
 
Entrance Effect 
 
Now consult page 52 of your text, part (e).  Very near the entrance to the drain tube, the 
velocity profile is nearly flat in the center with a very steep decrease at the wall.  In this 
“entrance” region the frictional resistance per unit length is much larger than it is for fully 
developed flow.  Consequently, our estimate of the friction factor, f, will not yield very 
good results—particularly if the drain tube we’ve selected is short.  For laminar flow, for 
example, 

Re035.0 ⋅≈ dLe .     (9)    
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So if Re=2000, we’ll need 70 tube diameters to attain the expected parabolic velocity 
profile.  For turbulent flow, 
 
   ;      (10) dLe 40≈
 
the entrance length is less dependent upon Reynolds number.  Therefore, if we use the 
one of the 0.475 cm diameter tubes, nearly 20 cm of length will be required for 
development of the velocity distribution.  For a short tube, this will have a profound 
impact upon the results because τ0 is much larger in the entrance region than it is for fully 
developed flow. 
 
Acceleration in Startup 
 
And there is another problem—see Figure 4D.2 on page 150 of your text.  When we 
unplug the drain tube, the water within will accelerate for some period of time.  
Remember, we’re using a pseudo-steady state approach to this problem.  How long will it 
take for the water to attain a velocity of, say, 90% of its ultimate centerline value?  For 
laminar flows we can estimate the acceleration period using 4D.2.  The figure indicates 
that the centerline velocity will be 90% of the ultimate (maximum) value if νt/R2≈0.42.  
Convince yourself that this t is not a significant fraction of the efflux time of the tank.  
Under what circumstances might it be? 
 
Draining the Tank through the Orifice 
 
The preceding model for a drain tube of length, L, is not valid for the orifice.  You may 
recall from physics that the velocity of discharge through a hole in a tank can be 
described with Torricelli’s theorem: 
 
   ghV 2= .      (11) 
 
However, this is a frictionless result and we can expect the velocity obtained with it to be 
too large.  A simple fix can be developed using (7.5-10) from Transport Phenomena: 
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Therefore, the velocity of water through the orifice is better described by 
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Solution of the Model 
 
Let’s turn our attention back to solution of the model.  Suppose we select the long (L=61 
cm) drain tube with a inside diameter of 0.475 cm.  We fill the tank to a depth of 18 cm, 
allow the water to become quiescent, then start the draining process.  The tank will empty 
in about 2 minutes.  What will the model show?  Let’s find out. 
 
We have several options.  We can employ the Euler scheme described previously; it can 
be easily implemented in Excel.  Or we could write our own program in a high-level 
language like Fortran or BASIC.  Alternatively, we could use Mathcad.  For the latter, we 
might select the fourth-order Runge-Kutta method, i.e., rkfixed.  The actual format is as 
follows: 
 
    ),400,100,0,(: DhrkfixedZ =
 
In this case, we are evaluating the solution given an initial value of h between t=0 and 
t=100 s, using 400 points.  The D represents the first derivative—that’s our equation (7).  
The choice of the 100 s limit on t turns out to be insufficient.  The model actually 
indicates that it will take about 107 s for the tank to drain out.  The complete setup for 
this problem in Mathcad is shown on the following page, along with a crude graph of the 
results. 
 
 
You can see immediately that we are underestimating the frictional resistance offered by 
the brass tube.  However, an easy means of compensation has been provided.  Note the 
assignment of: 
 
  fconst:=0.0791. 
 
Try increasing this value by 15%, to about 0.09.  How does this affect your model 
output? 
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Efflux time for a cylindrical tank with tube (d,L) of 0.475 and 61 

g 980:=

L 61:=

R 0.2375:=

rho 1:=

visc 0.01:=

Rt 7.775:=

fconst 0.0791:=

h0 18:= D t h,( )
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Z rkfixed h 0, 110, 400, D,( ):=
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Report Requirements 
 
A written report is required for this experiment; it will have four main components and 
the length can vary considerably depending upon how one decides to handle the figures 
(there may be as many as 16). 
 
1)  An introduction, including an accurate description of the system. 
 
2)  A graphical presentation of the experimental data for the tubes you tested (each with 
an informative caption). 
 
3)  A description of the model employed with a same-graph comparison (one option) to 
your experimental data.  Please include a copy of your spreadsheet with cell formulas. 
 
4)  An explanation of the results with careful attention paid to any significant 
discrepancies. 
 
In addition, you are expected to provide answers for the following questions (items): 
 
•Does the Reynolds number in your trial(s) ever fall below 3000? 
 
•What is L/d for your tube(s)? 
 
•How much (%) would you have to increase the friction factor in order for your model 
and your experimental data to agree quantitatively?  Demonstrate this for several of the 
worst-case trials. 
 
•Would accounting for the change in kinetic energy appreciably change the behavior of 
your model? 
 
•In the case of the orifice, determine the “best” value for ev.  How large is the correction 
that is being made to Torricelli’s law? 
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